Какой полимер приносит прибыль пластическим хирургам – какой полимер приносит прибыль пластическим хирургам

ПОЛИМЕРЫ. Эксперимент в хирургии

В начале нашего столетия химики синтезировали особую группу высокомолекулярных соединений и полимеров. Обладая высокой степенью химической инертности, они сразу же привлекли внимание многочисленных исследователей и хирургов. Так химия пришла на помощь современной восстановительной хирургии.

Полимеры стали использоваться в качестве трансплантатов. Накопленный опыт позволил перейти от случайного применения их к систематическому изучению свойств и особенностей.

Протезы различных органов и тканей имеют свои функциональные отличия, и поэтому полимерные материалы должны обладать совершенно разными свойствами.

В настоящее время из полимеров изготавливается более трех тысяч различных видов медицинских изделий. Вполне понятно, что дальнейшие успехи в этой области зависят от кооперирования и творческого содружества между химиками и медиками. Химическая промышленность выпускает различные полимеры с точным соблюдением тех требований, которые к ним предъявляют. Однако специальных полимеров для применения в медицине выпускается пока еще мало. Первостепенной задачей является разработка технических условий на «медицински чистые» полимеры, которые не оказывали бы вредного действия на организм человека.

Началом применения полимерных материалов в медицине следует считать 1788 год, когда во время операции А. Шумлянский прибег к каучуку. Затем в1895 году был использован целлулоид для закрытия костных дефектов после операций на черепе. В 1939 году совместные усилия стоматологов и химиков (И. Ревзина, Г. Петрова, И. Езриелева и др.) привели к созданию полимера АКР-7 для изготовления челюстных и зубных протезов. Вскоре появился ряд пластмасс из акриловых смол, оказавшихся пригодными для глазных протезов и восстановительных операций в челюстно-лицевой хирургии. В 1943 году С. Федоровым из полиметилметакрилата впервые сделана заплата для закрытия дефекта черепа. В настоящее время этот материал широко применяется у нас в стране и за рубежом. Из него изготовляют трубки для дренирования слезного мешка, гайморовой полости, протезы кровеносных сосудов, клапанов сердца, пищевода, желудка, мочевого пузыря, желчных протоков, уретры, хрусталика глаза; штифты и пластинки для фиксации костей при переломах, полимерные сетчатые «каркасы» для соединения кишок, сухожилий, трахеи.

Одним из первых синтетических материалов, использовавшихся для пластики кровеносных сосудов, был поливинилалкоголь. Я познакомился с его применением в 1955 году в Англии при посещении хирургической клиники профессора Г. Робба. Он замещал трубками из поливиниловой губки дефект сосуда. Я привез этот материал на кафедру топографической анатомии и оперативной хирургии, и мы также стали экспериментировать. Но оказалось, что вставки из поливиниловой губки через один-два года «старели», склерозировались, их приходилось удалять. Кроме того, выяснилось, что поливинилалкоголь может быть использован только при операциях на аорте и крупных сосудах. В сосудах же небольшого диаметра на всем протяжении протеза вскоре образуется тромб. Аналогичные наблюдения сделали и американские хирурги.

Малый диаметр периферических сосудов, худшие условия кровообращения и особенности строения их стенок приводили к плохому прорастанию (вживлению) ткани в поры синтетического протеза.

К полимерам, применяемым для протезов внутренних органов, предъявляются жесткие требования. Главнейшее из них — длительное сохранение основных физико-механических свойств при постоянном разрушительном воздействии ферментативных систем живого организма. Наиболее успешно применяются в хирургии полимеры, изготовленные на основе акриловой и метакриловой кислот, хорошо зарекомендовавшие себя в травматологии и ортопедии и используемые для замещения тазобедренного сустава и дефектов костей черепа.

В 1952 году советский хирург М. Шеляховский при операциях по поводу грыж передней брюшной стенки применил перфорированные пластинки из фторопласта-4. В последующие годы под руководством Б. Петровского для этих же целей, а также для пластики диафрагмы были использованы капроновая сетка и ивалон. Особо перспективными являются синтетические ткани с бактерицидными свойствами — метилен, биолан и йодин. Сетки из них оказались наиболее пригодными для пластических операций при грыжах живота.

Предстоит еще много сделать в поисках искусственных материалов для поврежденных суставов, полых органов, костей, мягких тканей, сухожильных связок и особенно протезов, предназначенных для временного нахождения в организме, до срастания ткани, после чего они полностью должны рассасываться. Полимеры этой группы изучены меньше всего, и их пока мало.

Наиболее часто применяющиеся в медицине полимеры — силиконы. Их положительными свойствами являются химическая и физиологическая инертность, термостабильность — до 180 градусов Цельсия. Силиконы необходимы при косметических операциях на лице, молочных железах, для изготовления катетеров, клапанов сердца, пленки для защиты поверхности кожи при ожогах.

Довольно широкое распространение в медицине получает полиэтилен. Он обладает большой прочностью, гибок и эластичен, не поддается органическим растворителям, щелочам и слабым кислотам. В нем отсутствуют токсичные вещества. Обычно используются две полиэтиленовые пленки, между которыми расположена сетка из синтетических волокон, например, лавсана.

На основе полимеров создан шовный материал, успешно конкурирующий с традиционными кетгутом и шелком. Помимо требований к полимерам, имплантируемым в организм, он должен обладать высокой капиллярностью (для поглощения раневого экссудата), эластичностью, термостойкостью. В настоящее время успешно ведутся работы по созданию окрашенных синтетических шовных материалов, лигатур, обеспечивающих более надежное завязывание узлов, а также заменителей кетгута с различными сроками рассасывания их в организме.

Широкие перспективы открылись в связи с развитием производства синтетических тканых материалов. Бинты, изготовленные на основе капрона с хлопком, по своим физико-механическим свойствам не уступают обычным бинтам из хлопчатовискозной марли, выдерживая стерилизацию при температуре 120-130 градусов Цельсия. Марля и вата из лавсана, вискозы, капрона по капиллярности превосходят хлопчатобумажную вату и марлю в два раза.

Важными достижениями последнего времени являются синтез пленкообразующих составов и конструирование распылителей для нанесения их на раны и ожоговые поверхности, а также создание медицинских клеев для тканей, сосудов, бронхов, кишечника и паренхиматозных органов.

Медицинский клей должен обладать рядом необходимых свойств: отсутствием токсического и аллергического влияния на организм, прочностью при соединении влажных тканевых поверхностей, способностью рассасываться в процессе образования соединительных тканей, бактерицидным и кровоостанавливающим действием. Впервые такой клей был выпущен американской фирмой «Этикон». В дальнейшем и в нашей стране на основе циакрила был разработан медицинский клей, широко применяющийся в хирургической практике.

Полимеры могут применяться как плазмо- и кровозаменители и для удлинения времени действия многих лекарственных препаратов. Помимо восстановления баланса крови при кровопотерях они обладают способностью связывать в организме токсические вещества. Отсюда, естественно, возникла идея использовать раствор полимера для пролонгирования (удлинения) срока действия лекарственного вещества. Исследования показали, что введение новокаина, инсулина, пенициллина, тетрациклина в раствор плазмозаменителя увеличивает продолжительность их действия и уменьшает токсичность.

В качестве пролонгаторов используются полимеры, обладающие ионообменными свойствами. Лекарственный препарат в организме постепенно «освобождается» от полимерной ионообменной смолы и оказывает терапевтическое действие. Этот механизм «освобождения» в основном сводится к тому, что соляная кислота желудочного сока разрушает соединения лекарственного вещества с ионообменной смолой, к которой добавляют антибиотики и сульфаниламиды. По сравнению с обычными, такие препараты обладают большей активностью. Скорость разрушения полимерных соединений, а следовательно, и степень пролонгации лекарств во многом зависят от того, насколько малы частицы ионообменной смолы: чем они меньше, тем медленнее идет их разрушение. Этот метод удлинения влияния лекарственных препаратов является одним из самых перспективных.

В настоящее время осуществлен синтез полимерных препаратов — антисклеротических, противоопухолевых, анестезирующих, противолучевых, антибиотических, противотуберкулезных. Увеличение сроков действия лекарств дает возможность более рационально и реже вводить их в организм, что значительно удобнее для больных и медицинского персонала, особенно при длительном, иногда многомесячном лечении.

Перспективы использования полимеров в медицинской практике неограниченны. Из устойчивых к воздействию высокой температуры полимеров производят шприцы разового применения, системы для переливания крови, аппараты искусственного кровообращения и искусственной почки, шпатели, аппликаторы. На основании разработки, осуществленной московским и ленинградским институтами переливания крови, из полимеров (полиэтилена) выпускают наборы мешков и приспособлений для изготовления предметов ухода за больными, протезно-ортопедических изделий, лабораторной посуды.

Особенно высокие требования предъявляются к полимерам в ортопедической стоматологии — протезировании. Зубные протезы должны быть изготовлены по моделям с особой точностью, отражающей форму челюсти, а также положение и форму зубов. В результате долгих поисков была найдена рецептура отечественного полимерного материала на основе акриловых смол, который с успехом применяется в стоматологии.

В последние годы разрабатываются новые полимеры на основе эпоксидных смол, обладающие лучшими физико-механическими качествами. Они идут также на протезирование дефектов лица, когда по тем или иным причинам хирургическую операцию выполнить невозможно. Пломбировочные материалы создаются на основе эпоксидных смол «холодного» отвердения. Они достаточно тверды, сохраняют постоянный объем. Срок их службы исчисляется десятилетиями.

Современная реконструктивная хирургия сердца и сосудов немыслима без полимеров. Известно, что они должны обладать так называемой «биологической инертностью», иметь необходимую механическую прочность, соответствующие «усталостные» характеристики, желаемую физическую структуру, а главное — не вызывать образования тромбов на своей поверхности при контакте с кровью. Но идеальных в этом отношении сосудистых протезов пока нет.

Разработка, изготовление и применение эластичных трубок из синтетических волокон ознаменовали собой новый этап в сосудистой хирургии. Протезирование стало одним из самых распространенных видов восстановительных операций на сосудистой, главным образом артериальной системе.

Сосудистые протезы из полимеров начали применяться в клинической практике с начала 50-х годов нашего столетия. Изучены непосредственные и отдаленные результаты этих вмешательств. Пластическим материалом служат тканые, вязаные, плетеные протезы из разнообразных синтетических волокон (лавсана, терилена, дакрона, тефлона) отечественного и зарубежного производства. В СССР организован серийный выпуск таких протезов для клинического лечения.

Успех операций по протезированию кровеносных сосудов, их «вживление» во многом зависят не только oт материала, из которого изготовлен протез, или от его конструкции, но и от диаметра сосуда, скорости кровотока по нему. Наилучший результат дает пластика аорты и крупных ее ветвей. При протезировании или шунтировании более мелких сосудов (ветвей общей сонной артерии, плечевой, бедренной, подколенной артерии), а также венозных стволов, например полых зен,- результаты несколько хуже. Сейчас уже накоплен большой клинический опыт по протезированию сосудов, и можно говорить о положительных отдаленных результатах операций, сделанных более 10 лет назад.

Морфологические исследования эволюции сосудистого протеза в организме показывают, что образующаяся внутренняя оболочка в сосуде после ее включения в кровоток — «выстилка» — покрывается клеточными элементами лишь путем «наползания» внутренней оболочки сосуда через зоны стыков с концов естественного кровеносного сосуда. Одновременно через поры сосудистого протеза происходит прорастание в него элементов наружной соединительнотканной оболочки. Именно на этом этапе важную роль играет пористость стенок сосудистого протеза. При ее недостаточности происходят перестройка структуры внутренней «выстилки», ее отслоение с последующим образованием тромба, закрывающего просвет протеза.

Продолжительность функций сосудистого протеза, в значительной мере зависит от скорости кровотока по нему. Малый кровоток может быть обусловлен различными причинами, например сдавлением протеза гематомой, рубцеванием на месте стыков, плохим состоянием дистальных (концевых) отделов сосудов. На внутренней стенке протеза происходит постоянное отложение фибрина, что еще более ухудшает кровоток и в конечном итоге приводит к тромбозу.

Таким образом, современные протезы сосудов по сравнению с естественными по своим функциональным свойствам еще далеко не совершенны. Однако накопленный опыт убедительно показывает, что синтетические материалы при протезировании отдельных участков аорты и ее крупных ветвей обеспечивают хорошую функцию этих участков кровеносного русла. Неудачи возникают, как мы уже говорили, при протезировании артерий малого диаметра, а также вен. Следовательно, необходимо разрабатывать новые полимерные материалы и более совершенные конструкции сосудистых протезов именно для таких отделов кровеносного русла.

Полимеры применяются также в восстановительной кардиохирургии, для замещения дефектов стенок и перегородок сердца. Причем рекомендуются полимерные ткани вязаной и тканой конструкций из полиэфирных волокон, ставших основой изготовления протезов.

Особое место в кардиохирургии занимают операции по поводу приобретенных и врожденных пороков сердца с использованием искусственных клапанов, являющихся на сегодня единственным радикальным методом излечения клапанного порока. Искусственные клапаны сердца завоевали «права гражданства» в хирургии, они успешно прошли испытания в эксперименте и применяются в клинике. Лучшим из них является шариковый клапан (каркас из титана и пластмассовый шар), сконструированный советскими инженерами в тесном сотрудничестве с хирургами. Он служит для замены всех сердечных клапанов: митрального, трехстворчатого, аортального и легочного.

Шариковые клапаны обладают высокой надежностью, долговременностью, хорошо функционируют. В период сердечного цикла они делают два движения — закрываются и открываются. Каждый из них производит около 80 миллионов колебаний в год. Дальнейшее совершенствование клапанных протезов идет по пути разработки малогабаритных моделей и конструкций с ламинарным (без завихрений) потоком.

Внедрение искусственных клапанов сердца в клиническую практику у нас в стране и за рубежом позволило радикально излечивать больных с тяжелой патологией клапанного аппарата сердца. Об этом свидетельствует опыт нескольких десятков тысяч операций. Наблюдения за оперированными больными показывают высокую эффективность их, значительное улучшение состояния больных и восстановление утраченной трудоспособности.

Хирургия открытого сердца немыслима без искусственного кровообращения. Из полимеров изготовляется соответствующая аппаратура. В качестве частей аппарата искусственного кровообращения используются, например, оксигенаторы, в которых кровь насыщается кислородом с помощью полупроницаемых мембран и трубки.

Большую роль играют также полимеры в создании вспомогательного кровообращения и искусственного сердца. Все методы вспомогательного кровообращения направлены на разгрузку сердца, временно утратившего свою полноценную сократительную способность, от работы по перекачиванию крови и преодолению сопротивления сосудистой системы. Из полимеров изготавливаются насосы-баллончики, с помощью которых осуществляется вспомогательная контрпульсация, искусственные желудочки, позволяющие исключить из кровообращения правый или левый желудочек сердца. Правда, эти устройства пока еще не получили широкого применения в клинике.

Особым требованиям должны удовлетворять полимерные протезы для замещения отделов желудочно-кишечного тракта (пищевода, стенки желудка, желчного протока и т. д.). Здесь главное условие — их герметичность и надежная изоляция окружающих тканей от инфицированного содержимого кишечника. Однако пока такие протезы еще не созданы. Применение нашли лишь протезы из полиэтилена в виде трубок, обеспечивающие временную проходимость пищевода при его поражении опухолью. Делаются попытки изготовить протез желчного протока на основе пористой сосудистой трубки, покрытой для герметизации пленкой из полимеров.

Создание новых, более совершенных протезов тесно связано с разработкой биосовместимых материалов, имеющих определенные сроки рассасывания. В хирургии уже есть опыт замещения дефектов мягких тканей, особенно после иссечения рубцов, при послеоперационных грыжах. Здесь используются высокопористые ткани и трикотаж из лавсана, пропилена. Похожие на сетку, они не рассасываются в организме, образуя прочный каркас для мягких тканей.

Существенную роль играют полимеры при лечении переломов. Перспективным представляется создание из них костных штифтов с длительными сроками рассасывания, чтобы надежно фиксировать отломки кости до полного срастания перелома. Разработка таких штифтов ведется на основе биосовместимых материалов. Для лучшего срастания костных отломков трубчатых костей (бедра, костей голени) сейчас применяются металлические гвозди, пластины. Однако через 6-8 месяцев требуется повторная операция для удаления металлических деталей. При штифтах и пластинах из биосовместимых материалов надобность в такой операции отпадает и сокращаются сроки лечения больного, так как сам полимер, рассасываясь, стимулирует образование костной мозоли.

Быстрое развитие химии создает условия для синтеза полимеров, обладающих всем необходимым комплексом биологических свойств. В ближайшие годы, несомненно, появятся новые соединения, которые будут использоваться в протезировании внутренних органов и систем, вплоть до применения их в качестве переносчиков газов крови, а также веществ, усиливающих действие лекарственных препаратов.

Поделитесь на страничке

Следующая глава >

med.wikireading.ru

какой полимер приносит прибыль пластическим хирургам сканворд

Результаты поиска:

Поиск по ключевому слову

5 букв

6 букв

7 букв

8 букв

9 букв

10 букв

АНИЗОМЕРИЯ

Неодинаковость действия полимерных генов.

ГИДРОХИНОН

Промежуточный продукт в производстве красителей, проявляющее вещество в фотографии, антиоксидант, ингибитор полимеризации.

НИТРОМЕТАН

Бесцветная жидкость, растворитель эфироцеллюлозных лаков, виниловых полимеров, некоторых взрывчатых веществ.

ПЕНТАПЛАСТ

Полимер, получаемый полимеризацией дихлорметилоксациклобутана.

ПЛАСТБЕТОН

Бетон, в котором вяжущим веществом служит синтетический полимер.

ПОЛИСТИРОЛ

Синтетический полимер.

ПОЛИУРЕТАН

Синтетический полимер, применяемый для получения пенопластов, каучуков, клеев, лаков, волокон.

ПОЛИЭТИЛЕН

Синтетический полимер.

ШТАУДИНГЕР

Немецкий химик, доказавший, что полимеры состоят из больших молекул.

11 букв

АНТИОЗОНАНТ

Стабилизатор полимеров.

БОРОПЛАСТИК

Композиционный материал, содержащий в качестве наполнителя борные волокна, внедренные в термореактивную полимерную матрицу, при этом волокна могут быть как в виде мононитей, так и в виде жгутов, оплетенных вспомогательной стеклянной нитью или лент, в которых борные нити переплетены с другими нитями.

БУТИЛКАУЧУК

Продукт полимеризации изобутилена с небольшими количествами изопрена.

ДЕНАТУРАЦИЯ

Любые изменения природной (нативной) структуры молекулы белка, нуклеиновой кислоты и других биополимеров, не сопровождающиеся разрывом прочных ковалентных химических связей.

ЛАКИРОВЩИЦА

Рабочая, отвечающая за отделочный и защитный этап обработки изделия растворами органических полимеров.

ЛИНОЛЕУМЩИК

Мастер по настилке полимерного рулонного материала.

МЕТИЛХЛОРИД

Бесцветный газ, применяемый для введения группы Ch4, например при синтезе органических красителей и некоторых полимеров.

ОТВЕРДИТЕЛЬ

Одним из способов образования полимеров трёхмерного строения из олигомеров или линейных полимеров является введение такого вещества.

ОТВЕРЖДЕНИЕ

Необратимый переход реакционноспособных олигомеров в нерастворимые

и неплавкие полимеры.

ПОЛИИЗОПРЕН

Полимер, основной компонент натурального каучука, гуттаперчи, балаты.

РЕНАТУРАЦИЯ

Полное или частичное восстановление денатурированными биополимерами (нуклеиновыми кислотами, белками) своих естественных свойств.

УГЛЕПЛАСТИК

Полимерный композиционный материал.

12 букв

13 букв

АНТИСТАРИТЕЛЬ

Вещество, препятствующее быстрому износу полимерных материалов.

ГИАЛУРОНИДАЗА

Общее название ферментов, катализирующих реакции гидролитического расщепления и деполимеризации гиалуроновой кислоты и родственных ей соединений.

МАКРОМОЛЕКУЛА

Молекула полимера, содержащая большое число (от сотен до миллионов) атомов, соединенных химическими связями.

МЕТИЛЕНХЛОРИД

Растворитель полимеров, экстрагирующий агент для извлечения эфирных масел.

ПЛАСТИФИКАТОР

Вещество, которое вводят в состав полимерных материалов для придания эластичности и пластичности при переработке и эксплуатации.

ПЛАСТИФИКАЦИЯ

Введение в состав полимеров труднолетучих низкомолекулярных веществ, повышающих их пластичность и эластичность.

ПОЛИКАПРОАМИД

Синтетический полимер.

ПОЛИМЕРИЗАЦИЯ

Цепная реакция синтеза полимеров.

ПРОПИЛЕНОКСИД

Бесцветная жидкость, применяемая главным образом для синтеза поверхностно-активных веществ, а также полимеров, фумигант.

СОЛЮБИЛИЗАЦИЯ

Самопроизвольное проникание низкомолекулярного вещества внутрь мицелл поверхностно-активного вещества или макромолекулярных клубков полимера.

14 букв

15 букв

БЕНЗОИЛПЕРОКСИД

Вещество, инициатор свободнорадикальной полимеризации в производстве полимеров, отвердитель полиэфирных смол, вулканизующий агент, отбеливатель жиров, масел.

МЕТАЛЛОЧЕРЕПИЦА

Кровельный материал, изготавливается из оцинкованной стали с полимерным защитным покрытием.

МЕТИЛМЕТАКРИЛАТ

Бесцветная жидкость, применяемая в производстве полимеров.

ПОЛИВИНИЛАЦЕТАТ

Из какого полимера готовят клей ПВА, что отражено в его названии?

ПОЛИВИНИЛХЛОРИД

Синтетический полимер.

ПОЛИКОНДЕНСАЦИЯ

Метод синтеза полимеров, при котором взаимодействие молекул мономера обычно сопровождается выделением побочных низкомолекулярных соединений — воды, спирта, аммиака, галогенводородов, соответствующих солей.

16 букв

17 букв

18 букв

ПОЛИПИРОМЕЛЛИТИМИД

Синтетический полимер.

19 букв

20 букв

21 буква

26 букв

27 букв

Количество найденных определений : 90

ПОПУЛЯРНЫЕ ЗАПРОСЫ

tradefinances.ru

Использование в медицине полимерных материалов


Биккужина Альфия Хайдаровна 11 класс

Муниципальное общеобразовательное учреждение «Адамовская средняя общеобразовательная школа №1»

Фамилия, имя, отчество руководителя: Задойная Лариса Александровна

Тема работы: Использование в медицине полимерных материалов

e-mail: [email protected]

Использование в медицине полимерных материалов
Научные открытия всегда приносят пользу. Даже самые незначительные из них, как правило являются кирпичиками в общем здании науки, или очередной ступенью лестницы, по которой человечество поднимается… Но, куда оно поднимается, это человечество, никто точно не знает. Может, не поднимается, а опускается…

Есть научные открытия, которые за достаточно короткий срок существенно изменяют мир, в котором мы живем. Не всегда в лучшую сторону, хотя однозначных суждений сделать нельзя. Тема моего доклада «Использование в медицине полимерных материалов» очень актуальна на сегодняшний день.

В начале нашего столетия химики синтезировали особую группу высокомолекулярных соединений и полимеров. Обладая высокой степенью химической инертности, они сразу же привлекли внимание многочисленных исследователей и хирургов. Так химия пришла на помощь современной восстановительной хирургии.

Медицинская хирургия всегда требует новые материалы. Некоторые синтетические материалы, например, нейлон, капрон, лавсан, дакрон, тефлон и другие, начали внедрять в медицинскую практику по причине их кажущихся на первый взгляд положительных качеств, прежде всего доступности, легкости изготовления, прочности, простоты стерилизации, относительной биологической инертности.

Классическое понятие «биологическое лучше искусственного» подвергли сомнению из-за чрезмерного увлечения полимерными материалами.

Началом применения полимерных материалов в медицине следует считать 1788 год, когда во время операции А. Шумлянский прибег к каучуку. Затем в 1895 году был использован целлулоид для закрытия костных дефектов после операций на черепе. В 1939 году совместные усилия стоматологов и химиков (И. Ревзина, Г. Петрова, И. Езриелева и др.) привели к созданию полимера АКР-7 для изготовления челюстных и зубных протезов. Вскоре появился ряд пластмасс из акриловых смол, оказавшихся пригодными для глазных протезов и восстановительных операций в челюстно-лицевой хирургии. В 1943 году С. Федоровым из полиметилметакрилата впервые сделана заплата для закрытия дефекта черепа. В настоящее время этот материал широко применяется у нас в стране и за рубежом. Из него изготовляют трубки для дренирования слезного мешка, гайморовой полости, протезы кровеносных сосудов, клапанов сердца, пищевода, желудка, мочевого пузыря, желчных протоков, уретры, хрусталика глаза; штифты и пластинки для фиксации костей при переломах, полимерные сетчатые «каркасы» для соединения кишок, сухожилий, трахеи.

Инертные полимеры в живом организме оставались, к большому сожалению, инородным телом, они меняли свои физические свойства, поддерживали хроническую воспалительную реакцию; длительность функционирования протезов из полимеров приносила вред живому организму, в научной медицинской литературе появились сведения о канцерогенной опасности полимеров. Поэтому стали уделять больше внимания рассасывающимся материалам, которые в процессе регенерации постепенно замещались собственными тканями живого организма.

Весьма перспективен в этом отношении природный коллаген гидробионтов и наземных животных, сочетающий только положительные качества синтетических полимеров и тканевых трансплантатов.

Потребность в коллагеновых материалах в медицине весьма высока.

Органолептические показатели пористых коллагеновых материалов высокие, они представляют собой пластины белого цвета различной толщины в проделах 6-12 мм; по мягкости и эластичности пластины из коллагена морских млекопитающих превосходят пластины из коллагена наземных животных.

В медицинской практике решается проблема создания кровезаменителя с использованием коллагена: так называемый плазмозаменитель «Гемогель» представляет собой коллоидный раствор полимеризованного желатина.

В 21-м веке наряду с известной продукцией из коллагенсодержащего сырья (кожей, желатином, клеем, колбасной оболочкой «Белкозин») появится значительное количество материалов, созданных по новым технологиям на основе биологического коллагена. Особенно будут востребованы в больших количествах коллагеновые многопористые губки и пленки, обладающие более ценными лечебными и восстановительными свойствами в сравнении с различными мазями и донорской кожей при лечении глубоких ожогов.

К полимерам, применяемым для протезов внутренних органов, предъявляются жесткие требования. Главнейшее из них — длительное сохранение основных физико-механических свойств при постоянном разрушительном воздействии ферментативных систем живого организма. Наиболее успешно применяются в хирургии полимеры, изготовленные на основе акриловой и метакриловой кислот, хорошо зарекомендовавшие себя в травматологии и ортопедии и используемые для замещения тазобедренного сустава и дефектов костей черепа.

В 1952 году советский хирург М. Шеляховский при операциях по поводу грыж передней брюшной стенки применил перфорированные пластинки из фторопласта-4. В последующие годы под руководством Б. Петровского для этих же целей, а также для пластики диафрагмы были использованы капроновая сетка и ивалон. Особо перспективными являются синтетические ткани с бактерицидными свойствами — метилен, биолан и йодин. Сетки из них оказались наиболее пригодными для пластических операций при грыжах живота.

Предстоит еще много сделать в поисках искусственных материалов для поврежденных суставов, полых органов, костей, мягких тканей, сухожильных связок и особенно протезов, предназначенных для временного нахождения в организме, до срастания ткани, после чего они полностью должны рассасываться. Полимеры этой группы изучены меньше всего, и их пока мало.

Наиболее часто применяющиеся в медицине полимеры — силиконы. Их положительными свойствами являются химическая и физиологическая инертность, термостабильность — до 180 градусов Цельсия. Силиконы необходимы при косметических операциях на лице, молочных железах, для изготовления катетеров, клапанов сердца, пленки для защиты поверхности кожи при ожогах.

Довольно широкое распространение в медицине получает полиэтилен. Он обладает большой прочностью, гибок и эластичен, не поддается органическим растворителям, щелочам и слабым кислотам. В нем отсутствуют токсичные вещества. Обычно используются две полиэтиленовые пленки, между которыми расположена сетка из синтетических волокон, например, лавсана.

На основе полимеров создан шовный материал, успешно конкурирующий с традиционными кетгутом и шелком. Помимо требований к полимерам, имплантируемым в организм, он должен обладать высокой капиллярностью (для поглощения раневого экссудата), эластичностью, термостойкостью. В настоящее время успешно ведутся работы по созданию окрашенных синтетических шовных материалов, лигатур, обеспечивающих более надежное завязывание узлов, а также заменителей кетгута с различными сроками рассасывания их в организме.

Широкие перспективы открылись в связи с развитием производства синтетических тканых материалов. Бинты, изготовленные на основе капрона с хлопком, по своим физико-механическим свойствам не уступают обычным бинтам из хлопчатовискозной марли, выдерживая стерилизацию при температуре 120-130 градусов Цельсия. Марля и вата из лавсана, вискозы, капрона по капиллярности превосходят хлопчатобумажную вату и марлю в два раза.

Важными достижениями последнего времени являются синтез пленкообразующих составов и конструирование распылителей для нанесения их на раны и ожоговые поверхности, а также создание медицинских клеев для тканей, сосудов, бронхов, кишечника и паренхиматозных органов.

Медицинский клей должен обладать рядом необходимых свойств: отсутствием токсического и аллергического влияния на организм, прочностью при соединении влажных тканевых поверхностей, способностью рассасываться в процессе образования соединительных тканей, бактерицидным и кровоостанавливающим действием. Впервые такой клей был выпущен американской фирмой «Этикон». В дальнейшем и в нашей стране на основе циакрила был разработан медицинский клей, широко применяющийся в хирургической практике.

Полимеры могут применяться как плазмо- и кровозаменители и для удлинения времени действия многих лекарственных препаратов. Помимо восстановления баланса крови при кровопотерях они обладают способностью связывать в организме токсические вещества. Отсюда, естественно, возникла идея использовать раствор полимера для пролонгирования (удлинения) срока действия лекарственного вещества. Исследования показали, что введение новокаина, инсулина, пенициллина, тетрациклина в раствор плазмозаменителя увеличивает продолжительность их действия и уменьшает токсичность.

В настоящее время осуществлен синтез полимерных препаратов — антисклеротических, противоопухолевых, анестезирующих, противолучевых, антибиотических, противотуберкулезных. Увеличение сроков действия лекарств дает возможность более рационально и реже вводить их в организм, что значительно удобнее для больных и медицинского персонала, особенно при длительном, иногда многомесячном лечении.

Особенно высокие требования предъявляются к полимерам в ортопедической стоматологии — протезировании. Зубные протезы должны быть изготовлены по моделям с особой точностью, отражающей форму челюсти, а также положение и форму зубов. В результате долгих поисков была найдена рецептура отечественного полимерного материала на основе акриловых смол, который с успехом применяется в стоматологии.

В последние годы разрабатываются новые полимеры на основе эпоксидных смол, обладающие лучшими физико-механическими качествами. Они идут также на протезирование дефектов лица, когда по тем или иным причинам хирургическую операцию выполнить невозможно. Пломбировочные материалы создаются на основе эпоксидных смол «холодного» отвердения. Они достаточно тверды, сохраняют постоянный объем. Срок их службы исчисляется десятилетиями.

Современная реконструктивная хирургия сердца и сосудов немыслима без полимеров. Известно, что они должны обладать так называемой «биологической инертностью», иметь необходимую механическую прочность, соответствующие «усталостные» характеристики, желаемую физическую структуру, а главное — не вызывать образования тромбов на своей поверхности при контакте с кровью. Но идеальных в этом отношении сосудистых протезов пока нет.

Разработка, изготовление и применение эластичных трубок из синтетических волокон ознаменовали собой новый этап в сосудистой хирургии. Протезирование стало одним из самых распространенных видов восстановительных операций на сосудистой, главным образом артериальной системе.

Полимеры применяются также в восстановительной кардиохирургии, для замещения дефектов стенок и перегородок сердца. Причем рекомендуются полимерные ткани вязаной и тканой конструкций из полиэфирных волокон, ставших основой изготовления протезов.

Особое место в кардиохирургии занимают операции по поводу приобретенных и врожденных пороков сердца с использованием искусственных клапанов, являющихся на сегодня единственным радикальным методом излечения клапанного порока. Искусственные клапаны сердца завоевали «права гражданства» в хирургии, они успешно прошли испытания в эксперименте и применяются в клинике. Лучшим из них является шариковый клапан (каркас из титана и пластмассовый шар), сконструированный советскими инженерами в тесном сотрудничестве с хирургами. Он служит для замены всех сердечных клапанов: митрального, трехстворчатого, аортального и легочного.

Шариковые клапаны обладают высокой надежностью, долговременностью, хорошо функционируют. В период сердечного цикла они делают два движения — закрываются и открываются. Каждый из них производит около 80 миллионов колебаний в год. Дальнейшее совершенствование клапанных протезов идет по пути разработки малогабаритных моделей и конструкций с ламинарным (без завихрений) потоком.

Внедрение искусственных клапанов сердца в клиническую практику у нас в стране и за рубежом позволило радикально излечивать больных с тяжелой патологией клапанного аппарата сердца. Об этом свидетельствует опыт нескольких десятков тысяч операций. Наблюдения за оперированными больными показывают высокую эффективность их, значительное улучшение состояния больных и восстановление утраченной трудоспособности.

Хирургия открытого сердца немыслима без искусственного кровообращения. Из полимеров изготовляется соответствующая аппаратура. В качестве частей аппарата искусственного кровообращения используются, например, оксигенаторы, в которых кровь насыщается кислородом с помощью полупроницаемых мембран и трубки.

Большую роль играют также полимеры в создании вспомогательного кровообращения и искусственного сердца. Все методы вспомогательного кровообращения направлены на разгрузку сердца, временно утратившего свою полноценную сократительную способность, от работы по перекачиванию крови и преодолению сопротивления сосудистой системы. Из полимеров изготавливаются насосы-баллончики, с помощью которых осуществляется вспомогательная контрпульсация, искусственные желудочки, позволяющие исключить из кровообращения правый или левый желудочек сердца. Правда, эти устройства пока еще не получили широкого применения в клинике.

Особым требованиям должны удовлетворять полимерные протезы для замещения отделов желудочно-кишечного тракта (пищевода, стенки желудка, желчного протока и т. д.). Здесь главное условие — их герметичность и надежная изоляция окружающих тканей от инфицированного содержимого кишечника. Однако пока такие протезы еще не созданы. Применение нашли лишь протезы из полиэтилена в виде трубок, обеспечивающие временную проходимость пищевода при его поражении опухолью. Делаются попытки изготовить протез желчного протока на основе пористой сосудистой трубки, покрытой для герметизации пленкой из полимеров.

Существенную роль играют полимеры при лечении переломов. Перспективным представляется создание из них костных штифтов с длительными сроками рассасывания, чтобы надежно фиксировать отломки кости до полного срастания перелома. Разработка таких штифтов ведется на основе биосовместимых материалов. Для лучшего срастания костных отломков трубчатых костей (бедра, костей голени) сейчас применяются металлические гвозди, пластины. Однако через 6-8 месяцев требуется повторная операция для удаления металлических деталей. При штифтах и пластинах из биосовместимых материалов надобность в такой операции отпадает и сокращаются сроки лечения больного, так как сам полимер, рассасываясь, стимулирует образование костной мозоли.

Быстрое развитие химии создает условия для синтеза полимеров, обладающих всем необходимым комплексом биологических свойств. В ближайшие годы, несомненно, появятся новые соединения, которые будут использоваться в протезировании внутренних органов и систем, вплоть до применения их в качестве переносчиков газов крови, а также веществ, усиливающих действие лекарственных препаратов.

Современная медицина не стоит на месте, и, наверняка, впереди нас ждет еще множество открытий в сфере медицины.
Литература
1. Николаев А.Ф., Охрименко Г.И. Водорастворимые полимеры. Л.: Химия, 1979.

2. Полиакриламид / Под ред. В.Ф. Куренкова. М.: Химия, 1992.

3. Платэ Н.А., Васильев А Е. Физиологически активные полимеры. — М.: Химия, 1986.

4. Полимеры медицинского назначения: Пер. с япон./Под ред. С.Манабу.- М.: Медицина, 1981.

5. Афиногенов Г.Е., Панарин Е.Ф. Антимикробные полимеры. СПб: Гиппократ, 1993.

6. Коршак В.В., Штильман М.И. Полимеры в процессах иммобилизации и модификации природных соединений. М.: Наука, 1998.

7. Биомедицинские полимеры — в кн. Биополимеры: Пер. с япон./Под ред. Иманиси.- М.: Мир, 1988.

8. Петров Р.В., Хаитов Р.М. Искусственные антигены и вакцины. М.: Медицина, 1988 .

9. Торчилин В.П. Иммобилизованные ферменты в медицине. М.: ВНТИЦ, 1998.

10. Платэ Н.А. Полимеры для медицины // Наука в СССР, 1986.

11. Журнал ВХО им. Д.И.Менделеева, 1985.

Поделитесь с Вашими друзьями:

zodorov.ru

доходы пластических хирургов и самые популярные операции

Специалисты Международного общества эстетической и пластической хирургии (ISAPS) в течение года собирали и анализировали данные из 25 крупнейших стран, занимающих лидирующие позиции в пластической хирургии. В 2009 году на их долю выпало 75% проведенных эстетических операций.В списке «пластических стран» Россия заняла десятую позицию, расположившись между Италией и Турцией.

Исследование отражает все тренды, характерные для эстетической медицины. Так большинство пациентов расставило свои приоритеты в пользу липосакции, отодвинув на второй план операции по коррекции груди. Иными словами, количество проводимых в год операций по удалению избытков жира превышает число оперативных вмешательств, направленных на изменение формы и размера груди. Это можно объяснить тем, что увеличилось количество мужчин, желающих откачать жир с проблемных зон.

TOP пластических операций

Исследователи, проводившие анализ рынка пластической хирургии, составили Top операций. Согласно этим данным, процент проведенных в 2009 году липосакций составил 18,8%, доля операций по коррекции груди составила 17%, блефаропластика (пластика век) — 13,5%, ринопластика (пластика носа) — 9,4%, абдоминопластика (пластика живота) — 7,3%.

К сожалению, исследование не отражает общемировую динамику. Тем не менее, в отчете ISAPS представлены результаты исследования американского рынка пластической хирургии. Согласно этим данным, в период кризиса обороты медицинских компаний, специализирующихся на предоставлении услуг в области пластической хирургии, сократились в 1,2 раза. Эти показатели кажутся плачевными на фоне роста оборотов в российских клиниках пластической хирургии. Если эта тенденция продолжится, то, вполне вероятно, через несколько лет Россия возглавит рейтинг стран по количеству проводимых пластических операций в год.

Пока же, по данным ISAPS, российские хирурги провели в 2009 году 345 920 эстетических операций, из них 162 060 — пластические операции, 183 860 — косметологические процедуры. За аналогичный период в США было проведено 3 031 146 операций (1 303 932 пластических и 1 727 214 косметологических процедур). Вслед за США идут Бразилия, Китай, Мексика, Индия и Япония.

География распределения пластических операций

Специалисты затронули в своем исследовании и географию распределения наиболее популярных пластических операций. Выяснилось, что в США, Бразилии, Мексике и Китае пациенты предпочитают нехирургические методы коррекции, пациенты из Японии, Венгрии, Южной Кореи, Индии и Германии отдают пальму первенства более радикальным оперативным вмешательствам.

Китай занимает первое место по количеству проведенных увеличивающих маммопластик (222 530 операций в 2009 году) и блефаропластик (пластика век) — 175 228. Эти направления пользуются популярностью в Индии, Японии и Южной Корее. Невероятное желание бразильских женщин иметь четкие контуры фигуры выдвинуло страну на первое место по липосакции. Эта операция, как мы уже говорили, остается самой популярной не только в Бразилии, но и в других странах, в том числе и в России. В 2009 году отечественные специалисты провели 31 137 операций.

Российские специалисты крайне удивлены тем, что липосакция занимает в стране первое место по количеству проведенных в 2009 оперативных вмешательств. По мнению ведущих пластических хирургов столицы, корректнее было бы отводить лидирующую позицию увеличению груди и блефаропластике.

Россия — это огромное территориальное пространство. В данном случае нельзя подводить все под одну черту. На Дальнем Востоке, где проживает очень большой процент выходцев из стран Азии, особой популярностью пользуется этническая блефаропластика, на Юге России, где сосредоточены представители кавказских народов, пользуется спросом ринопластика (пластика носа).

Что касается половозрастных показателей, то у специалистов ISAPS представлены следующие данные: около 85-90% пациентов пластических хирургов — это женщины в возрасте 18-29 лет, возраст 38% пациенток колеблется от 30 до 49 лет, 36% женщин оперируются в возрасте от 50 лет.

В России 515 признанных пластических хирургов

Исследование Международного общества эстетической и пластической хирургии содержит сведения об уровне предоставляемых услуг в области эстетической медицины. Анализ этой позиции основывался на количестве признанных и подтвердивших свой профессионализм специалистов. К данной категории в России причислили всех членов ОПРЭХ (Общество пластических, реконструктивных и эстетических хирургов).

По данным ISAPS, признанных авторитетов во всем мире немногим более 30 000, из них 5 700 — это американские специалисты, 4 250 — китайские и 3 824 — бразильские. Россия занимает 12 место, здесь практикует более 515 пластических хирургов. Это 1,7% от общемирового числа пластических хирургов.

Сколько получают российские пластические хирурги?

С каждым годом растет не только общее число оперирующих пластических хирургов, но и их заработок. Сегодня отечественные специалисты получают в десять раз меньше своих зарубежных коллег. Безусловно, заработок пластического хирурга зависит от его места работы, квалификации и работающих на него PR-менеджеров.

Известно, что ежегодный заработок среднестатистического европейского пластического хирурга составляет $200 000 — 250 000. Доход специалистов из Японии и Австралии около $750 000. Самые богатые пластические хирурги живут в США, там они зарабатывают порядка $2 000 000 в год. Российские специалисты довольствуются ежегодным заработком в пределах $30 000 — 200 000. Оно и понятно, стоимость пластических операций в России намного ниже, чем в других странах. Например, абдоминопластика обойдется российскому пациенту в $1,5 — 5 000, стоимость пластики живота в Китае составляет порядка $4 000, в США — до $10 000.

PR — их хлеб насущный

Что мешает отечественным пластическим хирургам повысить уровень доходов? Множество факторов. Прежде всего, благосостояние пациентов. Количество платежеспособных женщин и мужчин, готовых платить за работу хирурга, не так велико. Позволить себе пластическую операцию могут немногие, остальным остается лишь мечтать. Еще один фактор, препятствующий увеличению заработка, — это малая информированность населения относительно возможностей современной пластической хирургии. У кого-то есть деньги на операцию, но он просто боится позволить себе такую экзотику. В США и других европейских странах СМИ пропагандируют пластическую хирургию, у нас на нее пытаются наложить табу.

И, пожалуй, главная причина неудач — это безграмотная политика продвижения на рынке медицинских услуг. Многие пластические хирурги далеки от реалий информационных технологий и не представляют, как правильно себя подать или, если хотите, продать себя, продать свой образ. Не зря говорят: сначала ты работаешь на свое имя, потом имя работает на тебя!

vseoplastike.ru

Полимерные материалы — Полимеры — Медицинская библиотека

Полимерные материалы — материалы на основе высокомолекулярных соединений — веществ, состоящих из однотипных групп атомов, соединенных химическими связями. Основную массу высокомолекулярных соединений получают либо методами химического синтеза из мономеров — продуктов переработки природного сырья (нефти, газа, угля и др.), либо путем переработки природных полимеров (например, целлюлозы, лигнина). В состав П. м. могут входить наполнители, красители, пластификаторы, стабилизаторы и другие добавки, регулирующие функциональные и технологические их свойства. При изготовлении изделий компоненты, входящие в состав П. м., тщательно гомогенизируют до получения однородной пластмассы, из которой прессованием, литьем под давлением, экструзией (формированием изделий путем выдавливания П. м. через профилирующий инструмент), вальцеванием или другим технологическим методом получают готовое изделие или материал, используемый для дальнейшей переработки.

    Для медицинских целей используют П. м. общетехнического назначения, а также специальное П. м. медицинского назначения (рис.). Из первых изготавливают строительное и санитарно-техническое оборудование лечебных учреждений, белье, посуду, предметы ухода за пациентами, детали различных приборов, исследовательской и лечебной аппаратуры, инструментов, посуды для аналитических лабораторий и др. Применение П. м. вместо традиционных материалов (металлов, стекла) обусловлено их лучшими технологическими свойствами, комплексом физико-механических характеристик, возможностью переработки в изделия массового выпуска и однократного применения. Помимо общетехнических к этим полимерным материалам предъявляются дополнительные санитарно-гигиенические требования — минимальное выделение в окружающую среду газообразных продуктов, не превышающее ПДК; нерастворимость в моющих растворах; возможность стерилизации дезинфицирующими растворами, газами, УФ-облучением, гамма-излучением и др.

    Наиболее широко применяются П. м. на основе поливинилхлорида. сополимеров стирола, полипропилена, полиметилметакрилата, полиуретанов, фенол-, мочевино-меламино-формальдегидных смол. Из них выпускают изделия различного назначения, а также плиты, листы, пленки, трубы, тканые и нетканые материалы на основе волокон, пасты, герметики, лаки, клеи. Специальные П. м. медицинского назначения предназначены для непосредственного контакта с живым организмом — в эндопротезах и материалах для восстановительной хирургии, в материалах и изделиях для службы крови, в виде инструментов для внутриорганных исследований, аппаратуры, заменяющей функции сдельных органов, компонентов терапевтических и диагностических средств. Основу таких П. м составляют синтетические и природные высокомолекулярные соединения,

не оказывающие на живой организм вредного воздействия. По характеру взаимовлияния с организмом П. м. разделяют на биоинертные, биосовместимые и биоактивные.

    Биоинертные П. м. (полиэтилен, полипропилен, фторопласт, силиконы, полиметилметакрилат и др.) практически не изменяют своих свойств под влиянием сред живого организма. В виде готовых изделий или материалов их используют для создания искусственных сосудов (полиэтилентерефталат, полипропилен, фторопласт), клапанов сердца (силикон, фторопласт, полипропилен, полиэтилентерефталат), хрусталиков глаз (полиметилметакрилат), частей эндопротезов суставов (полиамиды, фторопласт), в качестве искусственных сухожилий, мышечных связок (полипропилен, полиэтилентерефталат), деталей аппаратов искусственная почка, искусственное сердце — легкое (полиэтилен, полипропилен, полиакрилаты, силиконы, эфиры целлюлозы) и др.

    Биосовместимые П. м. способны постепенно подвергаться биодеструкции или растворению в биологических средах, что позволяет наиболее благоприятно осуществлять восстановительные хирургические операции, используя регенераторные функции организма. Материалы сополимеров винилпирролидона, акриламида, акрилатов, полиамидов, полигликолидов и др. в виде комбинированных протезов, сеток, пленок, листовых материалов, пеноматериалов, клеящих композиций, рассасывающихся шовных материалов применяют для временного замещения тканей при резекциях,

укрепления стенок полых органов, закрытия раневых поверхностей внутренних органов, заполнения послеоперационных полостей, соединения резецированных тканей. В травматологии биосовместимые П. м. из сополимеров винилпирролидона и метилметакрилата, цианакрилатов применяют для замещения дефектов костной ткани, в виде различных соединительных элементов, для склеивания костных отломков и др. В сердечнососудистой хирургии аналогичные П. м. из сополимеров винилпирролидона и бутилметакрилата используют при протезировании сосудов, укреплении сердечной стенки, герметизации анастомозов.

    Биоактивные П. м. могут обладать направленной физиологической активностью благодаря лекарственным препаратам, содержащимся в них в виде компонента. Применяют готовые лекарственные формы в виде композиций, где высокомолекулярные соединения либо играют роль основы-носителя (глазные лекарственные пленки с различными препаратами — сульфапиридазином, пилокарпином, канамицином и др., тринитролонг, динитросорбилонг), либо обладают собственной физиологической активностью макромолекул — полимерные лекарства, антитромбогенные П. м., искусственные плазмо- и кровезаменители, энтеро- и гемосорбенты (гемодез, полидез, аминопептид, полиглюкин и др.). Для биосовместимых и биоактивных П. м. используют высокомолекулярные соединения на основе N-винилпирролидона,

акриламида, некоторых акрилатов, гликолида, лактидов, N-окисей. производных целлюлозы, коллагена и др.

 

    Библиогр.: Лосев И.П. и Тростянская Е.Б Химия синтетических полимеров. М., 1971, библиогр., Полимеры в медицине, под ред. Н.А. Платэ, пер. с англ., М., 1969, библиогр., Полимеры медицинского назначения, под ред. Сэноо Манабу, пер. с японск., М., 1981, библиогр.

 

 

 

 

www.nedug.ru

Биоразлагаемые полимеры | Журнал «Сырье и Упаковка»

В последнее время все чаще в самых разных ситуациях можно встретить приставку «био» – это своего рода гарантия того, что товар безопасен для природы и человека. Этот тренд активно продвигают различные средства массовой информации, и потребитель начинает постепенно привыкать к тому, что био-кефир обещает решить все проблемы с пищеварением, био-топливо – «экологичная» замена нефти, а био-экстракты заставляют косметику творить чудеса. Не обошли вниманием и упаковку, она также стала экологичной, а производство биополимеров растет год от года. Но если толчком для разработки биотоплива послужило желание европейских стран быть независимыми от запасов нефти и ее поставщиков, то основным стимулом к разработке биополимеров стала проблема утилизации пластиковых отходов, объемы которых растут с каждым годом.

Биополимеры (полное название – биоразлагаемые полимеры) отличаются от остальных пластиков тем, что разлагаются в окружающей среде под действием физических факторов и микроорганизмов – бактерий или грибков. Полимер, как правило, считается биоразлагаемым, если вся его масса разлагается в почве или воде за период в шесть месяцев, что позволяет решать проблему отходов. Во многих случаях продукты распада биополимеров – углекислый газ и вода. Любые другие продукты разложения или остатки должны исследоваться на наличие токсичных веществ и безопасность. Биоразлагаемые полимеры можно перерабатывать с помощью большинства стандартных технологий производства пластмасс, включая горячее формование, экструзию, литьевое и выдувное формование.

Сейчас разработка биополимеров ведется по трем основным направлениям: производство биоразлагаемых полиэфиров на основе гидроксикарбоновых кислот; придание биоразлагаемости промышленным полимерам и производство пластических масс на основе воспроизводимых природных компонентов. Все эти технологии активно развиваются в США и Европе, Китае, Японии и Корее. А вот в России поиск технологий получения полимеров из возобновляемого сырья и биодеградируемых пластиков существенно осложнен – разработка новых технологий удовольствие дорогое, да и нефти в стране пока хватает. Тем не менее, рассмотрим основные предложения рынка биополимеров.

Полигидроксиалканоаты бактерий

При росте некоторых микроорганизмов на средах, содержащих питательные углеродные вещества и имеющих дефицит азота или фосфора, микробные клетки начинают синтезировать и накапливать полигидроксиалканоаты (polyhydroxyalkanoates – PHA), которые служат им резервом энергии и углерода (запасом пищи). При необходимости эти же микроорганизмы могут разлагать PHA. Это свойство бактерий человек использует для промышленного получения полигидроксиалканоатов, важнейшими из которых являются полигидроксибутират (PHB) и его сополимер с полигидроксивалератом (PHV).

Таким образом, полигидроксиалканоаты – это полностью биодеградируемые пластики, алифатические полиэфиры, устойчивые к ультрафиолетовому облучению. Хотя эти полимеры стабильны в водной среде, они поддаются биологическому разложению в морской воде, почве, в средах компостирования и переработки отходов. В компосте при влажности 85% и температуре 20–60 °С они разлагаются на воду и углекислый газ за 7–10 недель.

Возможные области применения PHA – это изготовление биоразлагаемых упаковочных материалов и формованных товаров, нетканых материалов, одноразовых салфеток, предметов личной гигиены, пленок и волокон, водоотталкивающих покрытий для бумаги и картона. Первое промышленное производство сополимеров PHB-PHV организовала в 1980 году английская фирма ICA под торговой маркой Biopol. Этот полимер характеризуется относительной термостабильностью, пропускает кислород, устойчив к агрессивным химикатам и имеет прочность, сопоставимую с полипропиленом.

Biopol выпускается до сих пор несколькими компаниями, но объемы не превышают 10 тыс. тонн в год. Дело в том, что его стоимость составляет $10–15 за кг – это в 8–10 раз выше, чем у традиционных пластиков. Поэтому основные сферы применения – медицина, упаковка некоторых парфюмерных товаров, изделия личной гигиены.

В апреле 2010 года в США компанией Тelles был запущен завод по производству PHBV мощностью 50 тыс. тонн в год. Пластик получил название Mirel, его предполагаемая цена – $4,5–5,5 за кг. Отметим, что традиционный полиэтилен низкого давления стоит в России около $2,2–2,5 за кг. Сырьем для предприятия Тelles служит глюкоза, получаемая из осахаренного кукурузного крахмала. Стоимость сырья в себестоимости PHBV составляет при этом 60%. Поэтому основные усилия направлены на поиск дешевого сырья для производства PHA. Для России перспективным сырьем сегодня является крахмал зерновых (пшеница, рожь, ячмень) и, в перспективе, производные древесного сырья.

Полимолочная кислота

Одним из самых перспективных биопластиков для применения в упаковке считается полилактид (полимолочная кислота, polylactic acid – PLA), продукт конденсации молочной кислоты, линейный алифатический полиэфир. Молочную кислоту – мономер, из которого в дальнейшем искусственно синтезируют полилактид, производят бактерии. Производство молочной кислоты микробиологическим способом дешевле традиционного, так как бактерии синтезируют ее из доступных сахаров в технологически несложном процессе. Сам полимер молочной кислоты (точнее, смесь двух оптических изомеров одного и того же состава) имеет достаточно высокую термическую стабильность: температуру плавления 210–220 °С, температуру стеклования – около 90 °С. Полилактид – прозрачный бесцветный термопластический полимер, он устойчив к действию ультрафиолета, плохо воспламеняется и горит с малым выделением дыма. PLA возможно перерабатывать всеми способами, применяемыми для переработки термопластов. Изделия из PLA характеризуются высокой жесткостью, прозрачностью и блеском, напоминая в этом отношении полистирол. Из листов полилактида можно формовать тарелки, подносы, получать пленку, волокно, упаковку для пищевых продуктов и косметики, имплантанты для медицины, бутылки для молока, соков, воды, но не газированных напитков, так как PLA пропускает углекислый газ. Из PLA также изготавливают игрушки, корпусы сотовых телефонов, компьютерные мышки и ткани.

Полилактид полностью биоразлагаем, его разложение идет в два этапа. Сначала эфирные группы постепенно подвергают гидролизу водой для формирования молочной кислоты и прочих небольших молекул, затем их разлагают с помощью микробов в определенной среде. Изделия из PLA при компостировании полностью разлагаются на воду и углекислый газ за период 20–90 дней.

Патент на способ промышленного получения PLA был выдан компании DuPont еще в 1954 году. Однако коммерциализация этого биопластика началась лишь в XXI веке. В 2002 году в городе Блэр в США фирмой Nature Work был запущен завод мощностью 140 тыс. тонн по производству PLA из глюкозы кукурузного крахмала. Сегодня это крупнейший производитель PLA в мире, его мощности уже 280 тыс. тонн. В ближайшие 5–10 лет планируется строительство третьего завода, сырьем для которого будут практически бесплатные отходы переработки кукурузы. Продукцию завода в Блэр перерабатывают множество компаний, только в Европе их более 30. В Европе также функционирует несколько заводов PLA, ряд мелких производителей есть и в Азии. Известные мировые инжениринговые компании также осваивают новую нишу. Лицензии на технологию PLA предлагают, например, Sulzer Chemtech Uhde Inventa-Fischer. Несмотря на то, что PLA – самый дешевый из биопластиков ( $2,2–4,5 за кг), пока развитие этого биопластика сдерживается его ценой. Однако прогнозируется, что новые технологии сделают его конкурентоспособным с полиэтиленом и полипропиленом уже до 2020 года.

PLA часто смешивают с крахмалом для повышения способности к биологическому разложению и рентабельности производства. Тем не менее, эти смеси довольно непрочные, поэтому к ним часто добавляют пластификаторы, такие как глицерин или сорбит для того, чтобы сделать их более эластичными. Вместо пластификаторов некоторые производители используют для смягчения PLA создание сплава с другими разлагаемыми полиэфирами.

Модифицированный крахмал и другие природные полимеры

Применение для изготовления упаковки биоразлагаемых природных полимеров интересно тем, что ресурсы исходного сырья постоянно возобновляемы и практически не ограничены. Наиболее широко для производства биоразлагаемых упаковочных материалов используется крахмал. Основным недостатком в этом случае является повышенная способность к впитыванию влаги. Избежать этого можно, заменив часть гидроксильных групп молекулы крахмала на эфирные или сложноэфирные. Химическая обработка позволяет создать дополнительные связи между различными частями полимера крахмала для того, чтобы увеличить его теплостойкость, устойчивость к воздействию кислот и срезающему усилию. В результате такой обработки образуется модифицированный крахмал, который разлагается в окружающей среде, но обладает свойствами коммерчески полезного термопласта. Модифицированный крахмал можно использовать как биоразлагаемую пластмассу. Пластические массы на основе крахмала обладают высокой экологичностью и способностью разлагаться в компосте при 30 °С в течение двух месяцев. С целью снижения себестоимости биоразлагаемых материалов бытового назначения (упаковка, пакеты для мусора) используется неочищенный крахмал, смешанный с поливиниловым спиртом и тальком. Модифицированный крахмал можно производить на том же оборудовании, что и обыкновенную пластмассу, его можно окрашивать и на него можно наносить печать с использованием всех обычных технологий. Этот материал антистатичен по своей природе. Физические свойства модифицированного крахмала, в целом, уступают свойствам смол, полученных нефтехимическим путем – полиэтилену низкого и высокого давления и полипропилену. И все же крахмал уже нашел применение на некоторых рынках. Из него методом горячего формования изготовляют поддоны для пищевых продуктов; методом литьевого формования – сельскохозяйственные пленки, пенопластовые упаковочные материалы; столовые приборы и сеточки для овощей и фруктов – методом экструзии.

Также для производства биоразлагаемых пластиков на основе природных полимеров можно использовать и другие природные полисахариды: целлюлозу, хитин, хитозан. Полимеры, полученные взаимодействием целлюлозы с эпоксидным соединением и ангидридами дикарбоновых кислот, полностью разлагаются в компосте за 4 недели. На их основе формованием получают бутыли, одноразовую посуду, пленки для мульчирования. Из тройной композиции (хитозан, микроцеллюлозное волокно и желатин) получают пленки с повышенной прочностью, способные разлагаться микроорганизмами при захоронении в землю. Они применяются для упаковки, изготовления подносов и т.д. Пищевую упаковку производят также из природного белка – цеина.

Исследования промышленных способов получения биополимеров начались в конце 1980-х в Италии компанией Novamont S.p.a. Сегодня она располагает заводом продуктов на основе крахмала мощностью 60 тыс. тонн в год. В Германии работают фирмы Biotec (20 тыс. тонн в год) и BIOP Biopolymer Technologies (3,5 тыс. тонн в год), причем последняя также торгует лицензиями на собственную технологию получения биопластиков. В Голландии базируется компания Rodenburg Biopolymers с мощностями 40 тыс. тонн. В США крупным производителем является Cereplast Inc.

Придание биоразлагаемости промышленным полимерам

Проблема придания свойств биоразлагаемости хорошо освоенным многотоннажным промышленным полимерам (полиэтилен, полипропилен, поливинилхлорид, полистирол, полиэтилентерефталат) занимает важное место в исследованиях. Этого можно добиться разными способами. Одним из вариантов является ввод в полимерную молекулу специальных добавок, как правило, соединений переходных металлов, которые на свету и/или в тепле катализируют разложение полимеров. Использование биоразлагающих добавок целесообразно при производстве пакетов, сельскохозяйственных и упаковочных пленок, одноразовой посуды, бутылок и т.п. Проблемы тут две. Добавки должны допускать обработку полимера традиционными способами (литье, формование, выдув, экструзия), при этом полимеры не должны разлагаться, хотя подвергаются температурной обработке. Кроме того, добавка должна ускорять разложение полимера на свету, но допускать длительный период его использования. Тоже на свету. Иными словами, добавка должна «включать» разложение в определенный момент. Это существенная сложность. Современные добавки допускают типовые способы обработки полимеров, но с условием, что время нахождения сырья в зоне нагрева не должно превышать 7–12 минут. Малый процент добавки (обычно 1–8%) почти не сказывается при этом на остальных технологических режимах обработки, единственное – нужно равномерно распределять ее по объему полимера. Основными производителями таких добавок являются американские компании Willow Ridge Plastics, BioTec Environmental, ECM BioFilms. Одним из лидеров и пионеров рынка является британская Symphony Environmental со своей добавкой D2W. Как правило, добавки этих фирм работают с полиолефинами, однако, например, добавки серии EcoPure фирмы Bio-Tec Environmental можно использовать более чем с 15 полимерами. ECM BioFilms выпускает добавки для полистирола, полиуретанов и ПЭТФ. Срок деградации может варьировать от 9 месяцев до 5 лет. Стоимость добавок за оптовую партию может составлять от $4,2 до $18 за кг в зависимости от производителя.

Популярный способ сделать традиционные пластики биоразлагаемыми – ввод в состав макромолекул биоразлагаемых мономеров, например, того же крахмала. Например, основой таких сравнительно новых материалов, как Ecostar, Polyclean и Ampaset, является ПЭ высокого давления и крахмалы злаковых растений в качестве биоразлагаемой добавки. В крахмалосодержащую композицию вводят также антиоксиданты для уменьшения деструкции в процессе переработки композиции в изделия. В США широкое распространение получили биоразлагаемые на открытом воздухе упаковки под общим названием TONE. Основой для их производства служит поликапролактам, который хорошо совмещается механическим способом со многими широко производимыми пластиками (ПЭ, ПП, ПВХ, ПС, ПК, ПЭТФ). Существенным достоинством этой группы материалов является их принадлежность к термопластам, достаточная доступность и низкая стоимость, легкость переработки различными методами, высокий уровень свойств и скорость разложения на открытом воздухе.

Введение в молекулу PET чувствительных к гидролизу алифатических сомономеров, таких как полибутиленадипат/терефталат и политетраметиленадипат/терефталат в различных соотношениях, позволяет получить биоразлагаемый РЕТ с физическими свойствами, подобранными для применения в специальных целях. При этом скорость деградации изготавливаемых продуктов можно контролировать за счет добавления различного количества усилителей разложения к базовым смолам.

Перспективы рынка

Биоразлагаемые полимеры, особенно те, которые производятся из биологического сырья, составляют пока очень небольшую долю мирового рынка пластмасс. Согласно заключению недавнего отчета по разлагаемым материалам на биологической основе, выпущенного Институтом Перспективных Технологических Исследований Европейской Комиссии, доля этих материалов на рынке полимеров Европы будет составлять 1–2% к 2010 г. и не более 5% к 2020 году.

К числу основных применений биоразлагаемых пластмасс относится упаковка пищевых продуктов. Другое распространенное применение – одноразовые бутылки и стаканчики для воды, молока, соков и прочих напитков, тарелки, миски и поддоны. Еще один рынок сбыта для таких материалов – производство мешков для сбора и компостирования пищевых отходов, а также пакетов для супермаркетов. Развивающимся применением этих полимеров является рынок сельскохозяйственных пленок и косметика.

Преимущество биоразлагаемых полимеров – возможность стандартной обработки на стандартном оборудовании; низкий барьер пропускания кислорода и водяного пара; стойкость к разложению в обычных условиях; отсутствие проблем с утилизацией отходов; независимость от нефтехимического сырья. Их основные недостатки – ограниченные возможности для крупнотоннажного производства и высокая стоимость (пока в среднем 2 – 5 евро за кг). Однако новые крупномасштабные производственные системы снижают затратность производства биоразлагаемых полимеров, а усовершенствованные технологии полимеризации и смешивания делают эти материалы более прочными и износостойкими. Кроме того, производители, которые стремятся снискать благосклонность общественного мнения, начали использовать биоразлагаемые пластмассы для изготовления различной упаковки. В некоторых случаях, местные и национальные законы также стимулируют использование биоразлагаемых материалов. Так, в Тайване с 2003 года полимерные пакеты запрещены к использованию во всех торговых центрах. То же произошло в Лос-Анджелесе в 2007 году. С пластиковыми пакетами борются в Кении, Руанде и Танзании. В Бангладеш использование пластиковых пакетов запрещено полностью, после того как было обнаружено, что они, засорив дренажные системы, явились основной причиной наводнений в 1988 и1998 годах, которые затопили 2/3 страны. Во многих странах Европы существуют налоги на пластиковые пакеты. В декабре 2010 года их запретили в Италии. Если меры по охране среды будут ужесточаться, а цены на нефть и газ продолжат расти, то возможна смена парадигмы в области производства и использования полимеров, т.е. переход к производству биоразлагаемых пластиков из возобновляемого сырья наступит гораздо быстрее, чем мы этого ожидаем.

А пока, несмотря на то, что биоразлагаемые полимеры наступают на многих фронтах, нет оснований полагать, что в ближайшем будущем они смогут стать чем-то большим, чем материалы, занимающие только небольшой сегмент общего рынка пластмассовых материалов. Пока биоразлагаемые пластики из природного сырья не могут составить конкуренцию традиционным по самой простой причине – ценовой. Точно так же использование дорогих биоразлагающих добавок приводит к удорожанию изделий и из традиционных полимеров.

Тем не менее, растущая экологическая озабоченность потребителей, и правительственная политика, которая поощряет сохранение естественных ресурсов, стимулируют рост продаж биоразлагаемых полимеров. Прогнозы развития рынка биопластиков более чем оптимистичны. Его объем в 2010 году оценивался в $640 млн, а к 2012 году ожидается рост до $1,3 млрд

В более отдаленной перспективе 2015–2016 годов прогнозируется рост на 43% ежегодно. Ожидается, что самые дешевые из сегодняшних биопластиков смогут конкурировать с традиционными по цене к 2020 году. Вместе с тем, осознание той реальной цены, которую человечество должно платить за сохранение среды своего обитания, так или иначе приведет к введению серьезных ограничений на использование неразрушающихся изделий массового спроса и переходу к пусть более дорогим, но более экологичным материалам. Поэтому крупнейшие частные компании и научные центры многих стран занимаются поисками новых, более дешевых технологий получения биопластиков.

При подготовке статьи использованы материалы сайтов: www. polymery.ru, www.omnexus.com, www.simplexnn.ru, www.newchemistry.ru, www.unipack.ru и др.

cosmetic-industry.com

Полимеры, имитирующие свойства кораллов в косметике, могут принести создателям Нобелевскую

Три австралийских ученых оказались в числе номинантов на Нобелевскую премию за открытие, в значительной мере повлиявшее на косметическую индустрию.

Грэм Моад, Сан Тан и Эцио Риццардо, сотрудники австралийского национального научного агентства (Australia’s national science agency CSIRO) удостоились этой чести за разработки в области пластиков и полимеров, пригодных для использования в таком широком спектре решений, как создание фотоэлементов или применение в косметических продуктах.

Работа, занявшая годы труда у ученых, получила значительное распространение и стала основой для разработки новых решений – более 500 патентов были получены на spin-off продукты, общее количество научных публикаций превысило 100 единиц.

Технология RAFT (Reversible Addition Fragmentation chain Transfer technology) — полимеризация путём обратимого присоединения и фрагментирования, является мощной методикой, обеспечивающей высочайший уровень контроля за молекулярным весом и структурой полимера, что позволяет влиять на свойства готового полимера в очень широком диапазоне.

До сегодняшнего дня, эта технология нашла свое применение в разработках 60 компаний, включая таких гигантов, как L’Oreal, а сумма роялти от ее использования к 2021 году составит $32,2 млн.

Из последних эпизодов сотрудничества команды ученых с косметической отраслью можно привести пример их взаимодействия с производителем средств для кожи Larissa Bright, выпустившим на основе разработки ученых первый ультра-фиолетовый фильтр, в составе которого содержался полимер, имитирующий свойства натуральных кораллов Большого барьерного рифа.

Это стало возможным после двухлетней работы ученых над изучением биохимических реакций кораллов на солнечное излучение, итогом которой стало создание 48 новых солнечных фильтров для кожи.

Ученые заявляют, что это принципиально новое поколение подобных средств, и опыт миллионов лет кораллов рифа, выживавших в непростых климатических условиях станет отправной точкой в разработке новых революционных ингредиентов.

Источник:

cosmetology-info.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *